
Laser Doppler Velocimetry (LDV) Measurements 

Instrumentation: 

a. Laser, Probe and Processor  

Off surface flow field measurements were acquired via Laser Doppler velocimetry (LDV) 

which is a non-intrusive flow field diagnostic technique. The laser used in this system is a Spectra 

Physics Stabilite 2017 Argon Ion Laser. It is used in conjunction with a two-component Dantec 

Dynamics Fiber Flow laser Doppler velocimetry system. The Doppler bursts were measured using 

a BSA F60 Flow processor and BSA Flow Software Version 4.10 followed by Version 6.5. The 

processor was operated in coincidence mode so that all samples collected could be used in 

determining the Reynolds stress correlations. The Fiber Flow system splits the laser beam into two 

different wavelengths, a blue beam with wavelength of 532 nm and a green beam with wavelength 

of 488 nm. After the beams are split, and one is shifted by a constant 40 MHz via a Bragg cell to 

unambiguously detect flow direction. The fiber optic LDV system was operated in 180-degree 

backscatter mode. Two different focal length lenses were used on the 2D 60 mm fiber optic probe 

head. A 600 mm focal length lens was used for all profiles taken on the center-span location. For 

many of the off-span profiles, a 400 mm focal length lens was utilized for its ability to yield higher 

data rates, subsequently speeding up the data collection process. A photograph of the LDV system 

in operation is shown in Figure 1 below. 

 

Figure 1 Photograph of the LDV system, utilizing the 400 mm lens, in operation taking a profile at the start of the ramp, X = 0. 

b. Alignment Procedure: 

In order to obtain near wall measurements, the LDV probe head was tilted by a small angle 

(angle, φ, in Figure 2) to align the bottom beam nearly parallel to the ramp surface. This 

corresponds to the alignment of the wall-normal component of velocity being tilted approximately 

3°-7° to the normal direction, which was deemed negligible. The probe measurement volume has 

a wall-normal dimension of approximately 0.35 mm and 0.78 mm for the 400 mm and 600 mm 

focal length lenses respectively. This sets the effective spatial resolution of the mean and turbulent 

stress measurements. The utilized offset height of each first point should be approximately half of 

the probe wall-normal dimension (i.e. 0.35/2 = 0.18 mm and 0.78/2 = 0.39 mm), however, the data 



sets were calculated using a prior value of 0.38/2 = 0.19 mm. This difference may easily be 

adjusted by the user by shifting the data, although this difference is likely within the uncertainty 

of the starting position which is estimated as dy = ±0.25 mm (the step value used in the alignment 

process). 

 

Figure 2 Schematic of LDV probe alignment relative to test section. Note, the image is oriented looking downstream. 

c. Traverse and Controller: 

A three-axis Aerotech traverse system was utilized in conjunction with a Unidex 11S 

controller. The controller uses the DM6006 Stepping Drive Module with 300SM / ES12271 

stepper motors and a Parker Positioning systems linear sled. The system has a minimum of 200 

steps/rev with 1 rev = 5 mm. This yields a resolution of 0.025 mm per step. Due to an inoperable 

axis of the controller, only two axes were able to be utilized at a time. Hence, for each wall-normal 

profile the z-axis of the traverse was positioned manually before the start of the run. It is estimated 

that the uncertainty for manual alignment is dz = ±2 mm however, since the flow is quasi two-

dimensional, its sensitivity in this spanwise direction is very small. 

The traverse was positioned on the lab floor with casters and then lifted via solid threaded 

feet such that its position was stationary during the entire measurement process. Due to vibration 

of the test section the actual location of the LDV probe volume varied relative to the model 

geometry, hence the uncertainty in the measurement location is larger than the traverse resolution.  

Table 1 Uncertainty of traverse axes for controller aligned and manual alignment. 

Axis Controller Alignment Uncertainty (mm) Manual Alignment Uncertainty (mm) 

XCI, YCI, ZCI ±0.025 ±2 

 



d. Seeding Particles: 

The wind tunnel was seeded with Di-Ethyl-Hexyl-Sebacot (DEHS) particles of nominally 

1-micron diameter using a TSI Six-Jet Atomizer 9306 high volume liquid droplet seeding 

generator. Typically, only three or four jets, of the six, were used at a time. Seeding particles were 

introduced locally wall-normal in the upstream internal inlet contraction. See the Experimental 

Facility document for more details on how the seeding particles were introduced into the flow.  

Data Acquisition Procedures: 
The data presented here were acquired over the period of approximately 17 months ranging 

from April 2018 to August 2019. For each test, the tunnel was warmed up and allowed to reach 

steady state before any LDV measurements were acquired. For each profile, the probe locations 

were preset in the BSA flow software and the data collection process was semi-automated. A 

typical profile took anywhere from 30 minutes to 3 hours to collect sufficient statistically 

converged data. The number of samples collected per probe location varied significantly due to a 

highly varying data rate throughout the flow measurement region. In many cases, multiple runs 

were acquired for a particular profile and the results were then ensemble averaged. Dantec BSA 

Flow Software versions 4.10 and 6.5 were used to acquire and process the raw signal. The data 

output for each probe location consisted of a separate text file containing the row#, arrival time 

[ms], transit time [ms], and the instantaneous streamwise  u [m/s] and wall-normal, v [m/s] velocity 

components for each sample.  

Processing of Data: 
The individual text files for each probe location were loaded into and processed in 

MATLAB. The mean velocities were calculated as follows: 
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where uj and vj is the instantaneous velocity measurement of the data set and N is the number of 

samples. The variance is calculated as follows: 
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and the covariance as: 
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Using these statistical quantities, the raw data was then filtered to remove any samples outside of 

three standard deviations from the mean, to minimize errors as suggested by DeGraaff and Eaton 

[1], and new statistical quantities were calculated to replace those acquired using the raw data. All 

these quantities are local ones calculated directly from the filtered time series data. In order to 

determine the coordinate locations and the statistical quantities in the global coordinate system, a 



rotation must be applied to the local data. In the general sense, this is shown in Figure 3 where a 

coordinate system (x,y,z) is rotated to a reference frame (xref,yref,zref). The angle of the local 

coordinate system is α and the angle of the reference coordinate system is θref. Together their 

difference gives the required rotation angle to rotate a vector in the (x,y,z) frame to one in the 

(xref,yref,zref) frame.  

                                                 𝜃 =  𝜃𝑟𝑒𝑓 −  𝛼                                                               (1.2) 

 

Figure 3 Local and reference coordinate system relations. 

In this case, the reference coordinate system is the global one and θref = π/2. The angle of the local 

coordinate system, α, is calculated from the normal line of the ramp as follows:                                                      

                                    𝛼(𝑋) =  atan (
−1

5𝑎4𝑋4+4𝑎3𝑋3+3𝑎2𝑋2)                                            (1.3) 

where the coefficients are given in terms of the ramp length, L = 0.9 m, the ramp height, H = 0.2 

m and defined as: 

                    𝑎2 = − 10𝐻 𝐿3⁄ ,      𝑎3 =  15𝐻 𝐿4⁄ ,      𝑎4 =  − 6𝐻 𝐿5⁄                               (1.4)  

Note that α is a function of X and for each rotation, the starting X-location of the profile, Xp, must 

be used to calculate α. Here the rotation consists of rotating the local quantities in the (x,y,z) 

coordinate system through the angle θ to the global coordinate system (X,Y,Z). First the local (x,y,z) 

coordinates were rotated to the global coordinate system using the a first order tensor rotation 
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where XG is the coordinate vector in the global coordinates and XL is the coordinate vector in the 

local coordinates and Xoffset is the translation of the origin. Here XG, XL and Xoffset are defined as  
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and R is the rotation matrix defined as 
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The mean velocities were then calculated in the global coordinate system using a similar first order 

tensor rotation defined as follows: 

                                                  𝑈𝐺 =  𝑅𝑇 ∙ 𝑈𝐿                                                                 (1.8) 

where UG is the mean velocity vector in the global coordinates and UL is the mean velocity vector 

in the local coordinates. Here UG and UL are defined as:  
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Finally, the stresses were calculated in the global coordinate system using a second order tensor 

rotation defined as 

                                                  𝑇𝐺 = 𝑅𝑇 ∙ 𝑇𝐿 ∙ 𝑅                                                            (1.10) 

where T is the Reynolds stress tensor defined as follows: 
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and the subscripts L and G refer to the local and global coordinate systems respectively. 

Uncertainty Analysis: 
The uncertainty analysis procedure followed the general guidelines laid out in the ASME 

PTC 19.1-2005 Test Uncertainty manual [2]. First the uncertainty of the statistical quantities in the 

local coordinate system will be presented followed by that of the global coordinate system. 

Uncertainty Analysis – Local Values 

a. Random Uncertainty 

Random standard uncertainties were calculated based off the guidelines of Benedict and 

Gould [3] as they apply to data fitting any probability distribution and not just the normal 

distribution. The random standard uncertainties are related to the estimator variances as follows: 
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This next part documents how the systematic uncertainties were accounted for.  

b. Filtering Uncertainty 

The first systematic uncertainty accounted for is that due to filtering the raw data as 

suggested by DeGraaff and Eaton [1]. A filtering uncertainty was based on the difference between 

the raw variables and the filtered ones. This uncertainty is nonsymmetric, so the procedure outlined 

in section 8-2 of the ASME PTC 19.1-2005 Test Uncertainty manual [2] was followed. The 

systematic standard uncertainty is written as: 
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where the coverage factor was taken as 𝑘𝑓 = √3. The offset of each of the measurements is defined 

as follows: 
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c. Temperature Variation Uncertainty 

The temperature varies throughout the duration of each run thereby changing the local 

speed of sound. Since the Mach number, M is held constant at 0.2 throughout the duration of the 

tests, the freestream velocity must change in proportion to the local changes in the speed of sound. 

This introduces uncertainty that may be accounted for by examining the relationship between 

freestream velocity, U, and temperature, T, via the definition of the Mach number, M, written as: 

                                                     �̅� = 𝑀√𝛾𝑅𝑇                                                                   (2.4a) 

The sensitivity of this term can be written as: 
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or equivalently, 
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where bT is the uncertainty in temperature taken as half the estimated greatest change in 

temperature over the course of all the tests. Similarly, the wall-normal component of velocity, V, 

would be affected by the changing temperature. Here we estimate its uncertainty as follows: 
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d. Calibration Uncertainty  

The uncertainties listed so far are all dependent on the experiment, i.e. the number of 

samples, the type of post-process filtering, and the temperature variation during the test. 

Eliminating these, there is still a calibration uncertainty inherent with the LDV hardware and 

software, (i.e. how based on the inherent accuracy of the system). A typical method to calibrate 

LDV systems is to use a small wire on the edge of a rotating disk. The LDV probe volume is set 

coincident to the edge of the disk and a burst is detected each time the wire breaks the probe 

volume. By accurately knowing the diameters of the wire and disk and the rotation rate, the LDV 

system uncertainty can be estimated. Results from a NIST calibration on a similar Dantec 

Dynamics LDV system was used to estimate the calibration uncertainty. The uncertainty is taken 

from [6] and given as a function of velocity and is applied here to both LDV components as: 

                                  𝑏�̅�𝑐
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Again, this calibration uncertainty is only an estimate based on a similar calibration procedure. 

e. Instrument Uncertainty 

There is inherent uncertainty associated with the settings of the LDV flow processer, 

dubbed here as the instrument uncertainty. These settings include sensitivity, signal gain, signal to 

noise ratio, velocity span etc. With the most stringent settings, in theory, the instrument uncertainty 

should approach zero; however, frequently these settings had to be adjusted to off-ideal values as 

the data rate would otherwise fall to zero. There is no standard procedure for quantifying this 

uncertainty and our attempts would be speculative at best. Here we only acknowledge the existence 

of this uncertainty component but do not include it in the analysis. 

f. Velocity Bias Uncertainty 

Another source that introduces uncertainty into the measurement is that stemming from 

velocity bias. DeGraaff and Eaton [1] describe velocity bias as, “assuming the particles are 

uniformly distributed in the fluid, the likelihood of a particle passing through the measurement 

volume is proportional to the fluid velocity”. Weighting methods exist to compensate for this bias, 

but they are only viable in high data rate scenarios, which is not the case here. In low data rate 

scenarios there is no consensus on the best approach to quantify the velocity bias [4].  The Dantec 



reference manual [5] states that if the samples are statistically independent then weighting methods 

are unnecessary as the standard weighting of 1/N is sufficient. Here we acknowledge the velocity 

bias uncertainty, which is likely to be quite small in this case, but do not attempt to account for it 

in this analysis. 

g. Validation Bias Uncertainty 

Also known as filter bias, validation bias is “the tendency of real systems to have a 

measurement efficiency that is dependent on the speed of the measured particle” [4]. There is no 

universal approach to handle validation bias as it is too system dependent. Again, this uncertainty 

is simply acknowledged but not accounted for here. 

h. Systematic Standard Uncertainty 

The systematic standard uncertainty is a combination of all the individual systematic 

uncertainties and coverage factors and is calculated as follows: 
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Unless otherwise specified, the distributions were not assumed to be known so the coverage factors 

were taken as 𝑘 = √3. 

i. Combined and Expanded Uncertainties 

The combined standard uncertainty is a combination of the random uncertainty and the 

systematic standard uncertainty. 
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The expanded uncertainty is the combined standard uncertainty multiplied by the Student’s t-table 

value, tν,p where ν is N – 1 and p is the selected confidence interval. At 20:1 odds or p = 95% 

confidence and assuming a large sample size, tν,p = 1.96. For all of the reported values, tν,p was 

calculated based off of the actual number of samples in the data set and hence in some cases was 

larger than 1.96. Using this analysis, the 95% confidence intervals are: 
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where tν,p xi is the expanded uncertainty. The final asymmetric 95% confidence intervals can then 

be written as: 
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𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝑢′2̅̅ ̅̅ + 𝑞𝑢′2̅̅ ̅̅ ̅

𝑓
+ 𝑢′2̅̅ ̅̅

95                                         (2.9f) 

                                   𝑣′2̅̅ ̅̅
𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝑣′2̅̅ ̅̅ + 𝑞𝑣′2̅̅ ̅̅̅

𝑓
− 𝑣′2̅̅ ̅̅

95                                          (2.9g) 

                                   𝑣′2̅̅ ̅̅
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝑣′2̅̅ ̅̅ + 𝑞𝑣′2̅̅ ̅̅̅

𝑓
+ 𝑣′2̅̅ ̅̅

95                                          (2.9h) 

                                  𝑢′𝑣′̅̅ ̅̅ ̅
𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝑢′𝑣′̅̅ ̅̅ ̅ + 𝑞𝑢′𝑣′

𝑓
− 𝑢′𝑣′̅̅ ̅̅ ̅

95                                    (2.9i) 

                                 𝑢′𝑣′̅̅ ̅̅ ̅
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝑢′𝑣′̅̅ ̅̅ ̅ + 𝑞𝑢′𝑣′̅̅ ̅̅ ̅̅

𝑓
+ 𝑢′𝑣′̅̅ ̅̅ ̅

95                                      (2.9j) 

where the qi's are the offset given by equations (2.3a-e). 

Uncertainty Analysis – Global Values: 

For the global coordinate system, Section 7 of the ASME PTC 19.1-2005 Test Uncertainty 

manual [2] was followed to propagate the uncertainties calculated for the local coordinate system 

into the global coordinate system. The functional dependence of the mean and turbulence 

quantities in the global coordinate system on those acquired in the local coordinate system is as 

follows: 



                                                  𝑈𝐺
̅̅̅̅ = 𝑓(𝑈𝐿

̅̅ ̅, 𝑉�̅�)                                                            (3.1a) 

                                                  𝑉𝐺
̅̅ ̅ = 𝑓(𝑈𝐿

̅̅ ̅, �̅�𝐿)                                                             (3.1b) 

                                             𝑢𝐺
′2̅̅ ̅̅ = 𝑓(𝑢𝐿

′2̅̅ ̅̅ , 𝑣𝐿
′2̅̅ ̅̅ , 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ )                                                        (3.1c) 

                                            𝑣𝐺
′2̅̅ ̅̅ = 𝑓(𝑢𝐿

′2̅̅ ̅̅ , 𝑣𝐿
′2̅̅ ̅̅ , 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ )                                                         (3.1d) 

                                          𝑢′𝑣𝐺
′̅̅ ̅̅ ̅̅ = 𝑓(𝑢𝐿

′2̅̅ ̅̅ , 𝑣𝐿
′2̅̅ ̅̅ , 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ )                                                      (3.1e) 

The sensitivities of each global value with respect to its dependent local values may be obtained 

by partial differentiation. For example, the sensitivities of Eq. (3.1a) are 

                                           
𝜕𝑈𝐺̅̅ ̅̅

𝜕𝑈𝐿̅̅ ̅̅
=

𝜕

𝜕𝑈𝐿
(𝑅𝑇 ∙ 𝑈𝐿) = 𝑅11

𝑇                                                      (3.2a) 

                                           
𝜕𝑈𝐺̅̅ ̅̅

𝜕𝑉𝐿̅̅ ̅̅
=

𝜕

𝜕𝑉𝐿
(𝑅𝑇 ∙ 𝑈𝐿) = 𝑅12

𝑇                                                    (3.2b) 

where Eq. (1.8) is used. Similar results are obtained for Eqs. (3.1b)- (3.1e). 

Using the sensitivities, the random uncertainties are: 

                                    𝑆𝑈𝐺̅̅ ̅̅ = [(𝑅11
𝑇 𝑆𝑈𝐿̅̅ ̅̅ )2 +  (𝑅12

𝑇 𝑆𝑉𝐿̅̅ ̅̅ )2]
1

2                                             (3.3a) 

                                    𝑆𝑉𝐺̅̅ ̅̅ = [(𝑅21
𝑇 𝑆𝑈𝐿̅̅ ̅̅ )2 + (𝑅22

𝑇 𝑆𝑉𝐿̅̅ ̅̅ )2]
1

2                                             (3.3b) 

            𝑆
𝑢𝐺

′2̅̅ ̅̅ ̅ = [(𝑅11𝑅11𝑆
𝑢𝐿

′2̅̅ ̅̅ ̅)2 +  (𝑅21𝑅21𝑆
𝑣𝐿

′2̅̅ ̅̅̅)2 +  (𝑅11𝑅21𝑆
𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ ̅)2]

1

2
                         (3.3c) 

            𝑆
𝑣𝐺

′2̅̅ ̅̅̅ = [(𝑅12𝑅12𝑆
𝑢𝐿

′2̅̅ ̅̅ ̅)2 + (𝑅22𝑅22𝑆
𝑣𝐿

′2̅̅ ̅̅̅)2 +  (𝑅12𝑅22𝑆
𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ ̅)2]

1

2
                           (3.3d) 

           𝑆
𝑢′𝑣𝐺

′̅̅ ̅̅ ̅̅ ̅ = [(𝑅11𝑅12𝑆
𝑢𝐿

′2̅̅ ̅̅ ̅)2 +  (𝑅21𝑅22𝑆
𝑣𝐿

′2̅̅ ̅̅̅)2 +  (𝑅11𝑅22𝑆
𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ ̅)2]

1

2
                         (3.3e) 

where the subscripts ‘L’ and ‘G’ refer to the local and global coordinate value respectively and are 

added purely for clarity. Note that the local random uncertainties of equations (2.1a-e) did not have 

‘L’ subscripts even though they do here. 

The systematic standard uncertainties have the same form as the random uncertainties and 

are given as: 

                                       𝑏𝑈𝐺̅̅ ̅̅ = [(𝑅11
𝑇 𝑏𝑈𝐿̅̅ ̅̅ )2 +  (𝑅12

𝑇 𝑏𝑉𝐿̅̅ ̅̅ )2]
1

2                                          (3.4a) 

                                       𝑏𝑉𝐺̅̅ ̅̅ = [(𝑅21
𝑇 𝑏𝑈𝐿̅̅ ̅̅ )2 + (𝑅22

𝑇 𝑏𝑉𝐿̅̅ ̅̅ )2]
1

2                                             (3.4b) 

              𝑏
𝑢𝐺

′2̅̅ ̅̅ ̅ = [(𝑅11𝑅11𝑏
𝑢𝐿

′2̅̅ ̅̅ ̅)2 +  (𝑅21𝑅21𝑏
𝑣𝐿

′2̅̅ ̅̅̅)2 +  (𝑅11𝑅21𝑏
𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ ̅)2]

1

2
                       (3.4c) 

              𝑏
𝑣𝐺

′2̅̅ ̅̅̅ = [(𝑅12𝑅12𝑏
𝑢𝐿

′2̅̅ ̅̅ ̅)2 +  (𝑅22𝑅22𝑏
𝑣𝐿

′2̅̅ ̅̅̅)2 +  (𝑅12𝑅22𝑏
𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ ̅)2]

1

2
                       (3.4d) 



            𝑏
𝑢′𝑣𝐺

′̅̅ ̅̅ ̅̅ ̅ = [(𝑅11𝑅12𝑏
𝑢𝐿

′2̅̅ ̅̅ ̅)2 +  (𝑅21𝑅22𝑏
𝑣𝐿

′2̅̅ ̅̅̅)2 +  (𝑅11𝑅22𝑏
𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ ̅)2]

1

2
                       (3.4e) 

Note again that the subscripts ‘L’ and ‘G’ refer to the local and global coordinate values 

respectively and are added purely for clarity. 

Combined and Expanded Uncertainties 

The combined and expanded uncertainties take on the same form as for the local values 

with the new global random and systematic standard uncertainty values replacing the local ones. 

The only change that occurs is that the offset quantities of each of the measurements are changed 

from their respective local values to the following global ones: 

                               𝑞𝐺�̅�
= 𝑓 (𝑈𝐿

̅̅ ̅ +  𝑞�̅�𝑓
, 𝑉�̅� +  𝑞�̅�𝑓

) −  𝑓(𝑈𝐿
̅̅ ̅, 𝑉�̅�)                                      (3.5a) 

                               𝑞𝐺�̅�
= 𝑓 (𝑈𝐿

̅̅ ̅ +  𝑞�̅�𝑓
, 𝑉�̅� +  𝑞�̅�𝑓

) −  𝑓(𝑈𝐿
̅̅ ̅, 𝑉�̅�)                                 (3.5b)              

          𝑞𝐺
𝑢′2̅̅ ̅̅ ̅̅

= 𝑓 (𝑢𝐿
′2̅̅ ̅̅ +  𝑞𝑢′2̅̅ ̅̅ ̅

𝑓
, 𝑣𝐿

′2̅̅ ̅̅ + 𝑞�̅�𝑓
, 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ + 𝑞𝑢′𝑣′̅̅ ̅̅ ̅̅
𝑓

) − 𝑓(𝑢𝐿
′2̅̅ ̅̅ , 𝑣𝐿

′2̅̅ ̅̅ , 𝑢′𝑣𝐿
′̅̅ ̅̅ ̅̅ )                (3.5c) 

          𝑞𝐺
𝑣′2̅̅ ̅̅ ̅

= 𝑓 (𝑢𝐿
′2̅̅ ̅̅ +  𝑞𝑢′2̅̅ ̅̅ ̅

𝑓
, 𝑣𝐿

′2̅̅ ̅̅ +  𝑞�̅�𝑓
, 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ + 𝑞𝑢′𝑣′̅̅ ̅̅ ̅̅
𝑓
) − 𝑓(𝑢𝐿

′2̅̅ ̅̅ , 𝑣𝐿
′2̅̅ ̅̅ , 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ )              (3.5d) 

        𝑞𝐺
𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅

= 𝑓 (𝑢𝐿
′2̅̅ ̅̅ +  𝑞𝑢′2̅̅ ̅̅ ̅

𝑓
, 𝑣𝐿

′2̅̅ ̅̅ +  𝑞�̅�𝑓
, 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ + 𝑞𝑢′𝑣′̅̅ ̅̅ ̅̅
𝑓
) − 𝑓(𝑢𝐿

′2̅̅ ̅̅ , 𝑣𝐿
′2̅̅ ̅̅ , 𝑢′𝑣𝐿

′̅̅ ̅̅ ̅̅ )              (3.5e) 

where the functions f are from equations (3.1a-e). 
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